Premium
High‐Dimensional Heteroscedastic Regression with an Application to eQTL Data Analysis
Author(s) -
Daye Z. John,
Chen Jinbo,
Li Hongzhe
Publication year - 2012
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/j.1541-0420.2011.01652.x
Subject(s) - heteroscedasticity , outlier , computer science , econometrics , variance (accounting) , regression , statistics , regression analysis , model selection , mathematics , accounting , business
Summary We consider the problem of high‐dimensional regression under nonconstant error variances. Despite being a common phenomenon in biological applications, heteroscedasticity has, so far, been largely ignored in high‐dimensional analysis of genomic data sets. We propose a new methodology that allows nonconstant error variances for high‐dimensional estimation and model selection. Our method incorporates heteroscedasticity by simultaneously modeling both the mean and variance components via a novel doubly regularized approach. Extensive Monte Carlo simulations indicate that our proposed procedure can result in better estimation and variable selection than existing methods when heteroscedasticity arises from the presence of predictors explaining error variances and outliers. Further, we demonstrate the presence of heteroscedasticity in and apply our method to an expression quantitative trait loci (eQTLs) study of 112 yeast segregants. The new procedure can automatically account for heteroscedasticity in identifying the eQTLs that are associated with gene expression variations and lead to smaller prediction errors. These results demonstrate the importance of considering heteroscedasticity in eQTL data analysis.