z-logo
Premium
Buckley–James‐Type Estimator with Right‐Censored and Length‐Biased Data
Author(s) -
Ning Jing,
Qin Jing,
Shen Yu
Publication year - 2011
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/j.1541-0420.2011.01568.x
Subject(s) - estimator , censoring (clinical trials) , covariate , statistics , econometrics , population , computer science , mathematics , medicine , environmental health
Summary We present a natural generalization of the Buckley–James‐type estimator for traditional survival data to right‐censored length‐biased data under the accelerated failure time (AFT) model. Length‐biased data are often encountered in prevalent cohort studies and cancer screening trials. Informative right censoring induced by length‐biased sampling creates additional challenges in modeling the effects of risk factors on the unbiased failure times for the target population. In this article, we evaluate covariate effects on the failure times of the target population under the AFT model given the observed length‐biased data. We construct a Buckley–James‐type estimating equation, develop an iterative computing algorithm, and establish the asymptotic properties of the estimators. We assess the finite‐sample properties of the proposed estimators against the estimators obtained from the existing methods. Data from a prevalent cohort study of patients with dementia are used to illustrate the proposed methodology.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here