Premium
On Combining Family‐Based and Population‐Based Case–Control Data in Association Studies
Author(s) -
Zheng Yingye,
Heagerty Patrick J.,
Hsu Li,
Newcomb Polly A.
Publication year - 2010
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/j.1541-0420.2010.01393.x
Subject(s) - association (psychology) , computer science , population control , family studies , population , medicine , psychology , biology , genetics , environmental health , research methodology , family planning , psychotherapist
Summary Combining data collected from different sources can potentially enhance statistical efficiency in estimating effects of environmental or genetic factors or gene–environment interactions. However, combining data across studies becomes complicated when data are collected under different study designs, such as family‐based and unrelated individual‐based case–control design. In this article, we describe likelihood‐based approaches that permit the joint estimation of covariate effects on disease risk under study designs that include cases, relatives of cases, and unrelated individuals. Our methods accommodate familial residual correlation and a variety of ascertainment schemes. Extensive simulation experiments demonstrate that the proposed methods for estimation and inference perform well in realistic settings. Efficiencies of different designs are contrasted in the simulation. We applied the methods to data from the Colorectal Cancer Family Registry.