Premium
Estimating Treatment Effects of Longitudinal Designs using Regression Models on Propensity Scores
Author(s) -
AchyBrou Aristide C.,
Frangakis Constantine E.,
Griswold Michael
Publication year - 2010
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/j.1541-0420.2009.01334.x
Subject(s) - covariate , estimator , propensity score matching , econometrics , statistics , regression , regression analysis , average treatment effect , mathematics , longitudinal study , dimension (graph theory) , pure mathematics
Summary We derive regression estimators that can compare longitudinal treatments using only the longitudinal propensity scores as regressors. These estimators, which assume knowledge of the variables used in the treatment assignment, are important for reducing the large dimension of covariates for two reasons. First, if the regression models on the longitudinal propensity scores are correct, then our estimators share advantages of correctly specified model‐based estimators, a benefit not shared by estimators based on weights alone. Second, if the models are incorrect, the misspecification can be more easily limited through model checking than with models based on the full covariates. Thus, our estimators can also be better when used in place of the regression on the full covariates. We use our methods to compare longitudinal treatments for type II diabetes mellitus.