Premium
Estimation for the Optimal Combination of Markers without Modeling the Censoring Distribution
Author(s) -
Chiang ChinTsang,
Huang ShrYan
Publication year - 2009
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/j.1541-0420.2007.01040.x
Subject(s) - censoring (clinical trials) , estimator , inverse probability , weighting , statistics , inverse probability weighting , computer science , econometrics , mathematics , medicine , posterior probability , bayesian probability , radiology
Summary In the time‐dependent receiver operating characteristic curve analysis with several baseline markers, research interest focuses on seeking appropriate composite markers to enhance the accuracy in predicting the vital status of individuals over time. Based on censored survival data, we proposed a more flexible estimation procedure for the optimal combination of markers under the validity of a time‐varying coefficient generalized linear model for the event time without restrictive assumptions on the censoring pattern. The consistency of the proposed estimators is also established in this article. In contrast, the inverse probability weighting (IPW) approach might introduce a bias when the selection probabilities are misspecified in the estimating equations. The performance of both estimation procedures are examined and compared through a class of simulations. It is found from the simulation study that the proposed estimators are far superior to the IPW ones. Applying these methods to an angiography cohort, our estimation procedure is shown to be useful in predicting the time to all‐cause and coronary artery disease related death.