z-logo
Premium
Modeling Longitudinal Data with Nonparametric Multiplicative Random Effects Jointly with Survival Data
Author(s) -
Ding Jimin,
Wang JaneLing
Publication year - 2008
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/j.1541-0420.2007.00896.x
Subject(s) - akaike information criterion , nonparametric statistics , random effects model , computer science , parametric statistics , multiplicative function , parametric model , expectation–maximization algorithm , event (particle physics) , model selection , proportional hazards model , statistics , algorithm , econometrics , mathematics , mathematical optimization , maximum likelihood , medicine , mathematical analysis , meta analysis , physics , quantum mechanics
Summary In clinical studies, longitudinal biomarkers are often used to monitor disease progression and failure time. Joint modeling of longitudinal and survival data has certain advantages and has emerged as an effective way to mutually enhance information. Typically, a parametric longitudinal model is assumed to facilitate the likelihood approach. However, the choice of a proper parametric model turns out to be more elusive than models for standard longitudinal studies in which no survival endpoint occurs. In this article, we propose a nonparametric multiplicative random effects model for the longitudinal process, which has many applications and leads to a flexible yet parsimonious nonparametric random effects model. A proportional hazards model is then used to link the biomarkers and event time. We use B‐splines to represent the nonparametric longitudinal process, and select the number of knots and degrees based on a version of the Akaike information criterion (AIC). Unknown model parameters are estimated through maximizing the observed joint likelihood, which is iteratively maximized by the Monte Carlo Expectation Maximization (MCEM) algorithm. Due to the simplicity of the model structure, the proposed approach has good numerical stability and compares well with the competing parametric longitudinal approaches. The new approach is illustrated with primary biliary cirrhosis (PBC) data, aiming to capture nonlinear patterns of serum bilirubin time courses and their relationship with survival time of PBC patients.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here