Premium
A Unified Approach for Simultaneous Gene Clustering and Differential Expression Identification
Author(s) -
Yuan Ming,
Kendziorski Christina
Publication year - 2006
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/j.1541-0420.2006.00611.x
Subject(s) - cluster analysis , identification (biology) , computer science , data mining , gene , computational biology , microarray analysis techniques , biology , artificial intelligence , genetics , gene expression , botany
Summary Although both clustering and identification of differentially expressed genes are equally essential in most microarray studies, the two tasks are often conducted without regard to each other. This is clearly not the most efficient way of extracting information. The main aim of this article is to develop a coherent statistical method that can simultaneously cluster and detect differentially expressed genes. Through information sharing between the two tasks, the proposed approach gives more sensible clustering among genes and is more sensitive in identifying differentially expressed genes. The improvement over existing methods is illustrated in both our simulation results and a case study.