Premium
Joint Modeling of Survival and Longitudinal Data: Likelihood Approach Revisited
Author(s) -
Hsieh Fushing,
Tseng YiKuan,
Wang JaneLing
Publication year - 2006
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/j.1541-0420.2006.00570.x
Subject(s) - longitudinal data , joint (building) , computer science , econometrics , maximum likelihood , statistics , mathematics , data mining , engineering , architectural engineering
Summary The maximum likelihood approach to jointly model the survival time and its longitudinal covariates has been successful to model both processes in longitudinal studies. Random effects in the longitudinal process are often used to model the survival times through a proportional hazards model, and this invokes an EM algorithm to search for the maximum likelihood estimates (MLEs). Several intriguing issues are examined here, including the robustness of the MLEs against departure from the normal random effects assumption, and difficulties with the profile likelihood approach to provide reliable estimates for the standard error of the MLEs. We provide insights into the robustness property and suggest to overcome the difficulty of reliable estimates for the standard errors by using bootstrap procedures. Numerical studies and data analysis illustrate our points.