z-logo
Premium
Bayesian Cure Rate Frailty Models with Application to a Root Canal Therapy Study
Author(s) -
Yin Guosheng
Publication year - 2005
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/j.1541-0420.2005.040336.x
Subject(s) - proportional hazards model , multivariate statistics , cluster analysis , bayesian probability , statistics , computer science , survival analysis , data set , population , mathematics , econometrics , medicine , environmental health
Summary Due to natural or artificial clustering, multivariate survival data often arise in biomedical studies, for example, a dental study involving multiple teeth from each subject. A certain proportion of subjects in the population who are not expected to experience the event of interest are considered to be “cured” or insusceptible. To model correlated or clustered failure time data incorporating a surviving fraction, we propose two forms of cure rate frailty models. One model naturally introduces frailty based on biological considerations while the other is motivated from the Cox proportional hazards frailty model. We formulate the likelihood functions based on piecewise constant hazards and derive the full conditional distributions for Gibbs sampling in the Bayesian paradigm. As opposed to the Cox frailty model, the proposed methods demonstrate great potential in modeling multivariate survival data with a cure fraction. We illustrate the cure rate frailty models with a root canal therapy data set.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here