z-logo
Premium
Nonparametric Estimation of the Bivariate Recurrence Time Distribution
Author(s) -
Huang ChiungYu,
Wang MeiCheng
Publication year - 2005
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/j.1541-0420.2005.00328.x
Subject(s) - bivariate analysis , censoring (clinical trials) , joint probability distribution , estimator , nonparametric statistics , identifiability , mathematics , marginal distribution , statistics , copula (linguistics) , econometrics , random variable
Summary This article considers statistical models in which two different types of events, such as the diagnosis of a disease and the remission of the disease, occur alternately over time and are observed subject to right censoring. We propose nonparametric estimators for the joint distribution of bivariate recurrence times and the marginal distribution of the first recurrence time. In general, the marginal distribution of the second recurrence time cannot be estimated due to an identifiability problem, but a conditional distribution of the second recurrence time can be estimated nonparametrically. In the literature, statistical methods have been developed to estimate the joint distribution of bivariate recurrence times based on data on the first pair of censored bivariate recurrence times. These methods are inefficient in the model considered here because recurrence times of higher orders are not used. Asymptotic properties of the proposed estimators are established. Numerical studies demonstrate the estimators perform well with practical sample sizes. We apply the proposed method to the South Verona, Italy, psychiatric case register (PCR) data set for illustration of the methods and theory.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here