z-logo
Premium
Inherited Cardiac Diseases Caused by Mutations in the Nav1.5 Sodium Channel
Author(s) -
TFELTHANSEN JACOB,
WINKEL BO GREGERS,
GRUNNET MORTEN,
JESPERSEN THOMAS
Publication year - 2010
Publication title -
journal of cardiovascular electrophysiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.193
H-Index - 138
eISSN - 1540-8167
pISSN - 1045-3873
DOI - 10.1111/j.1540-8167.2009.01633.x
Subject(s) - medicine , sodium channel , nav1.5 , cardiology , nav1 , sodium , chemistry , organic chemistry
Cardiac Diseases Caused by SCN5A Mutations .  A prerequisite for a normal cardiac function is a proper generation and propagation of electrical impulses. Contraction of the heart is obtained through a delicate matched transmission of the electrical impulses. A pivotal element of the impulse propagation is the depolarizing sodium current, responsible for the initial depolarization of the cardiomyocytes. Recent research has shown that mutations in the SCN5A gene, encoding the cardiac sodium channel Nav1.5, are associated with both rare forms of ventricular arrhythmia, as well as the most frequent form of arrhythmia, atrial fibrillation (AF). In this comprehensive review, we describe the functional role of Nav1.5 and its associated proteins in propagation and depolarization both in a normal‐ and in a pathophysiological setting. Furthermore, several of the arrhythmogenic diseases, such as long‐QT syndrome, Brugada syndrome, and AF, reported to be associated with mutations in SCN5A, are thoroughly described. (J Cardiovasc Electrophysiol, Vol. 21, pp. 107–115, January 2010)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here