z-logo
Premium
Novel Electrode Design for Potentially Painless Internal Defibrillation Also Allows for Successful External Defibrillation
Author(s) -
JAYANTI VENKU,
ZVIMAN MENEKHEM M.,
NAZARIAN SAMAN,
HALPERIN HENRY R.,
BERGER RONALD D.
Publication year - 2007
Publication title -
journal of cardiovascular electrophysiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.193
H-Index - 138
eISSN - 1540-8167
pISSN - 1045-3873
DOI - 10.1111/j.1540-8167.2007.00936.x
Subject(s) - defibrillation , medicine , defibrillation threshold , anode , electrode , cathode , ventricle , biomedical engineering , skeletal muscle , cardiology , electrical engineering , physics , quantum mechanics , engineering
Background: Implantable cardioverter defibrillators (ICDs) save lives, but the defibrillation shocks delivered by these devices produce substantial pain, presumably due to skeletal muscle activation. In this study, we tested an electrode system composed of epicardial panels designed to shield skeletal muscles from internal defibrillation, but allow penetration of an external electric field to enable external defibrillation when required. Methods and Results: Eleven adult mongrel dogs were studied under general anesthesia. Internal defibrillation threshold (DFT) and shock‐induced skeletal muscle force at various biphasic shock strengths were compared between two electrode configurations: (1) a transvenous coil placed in the right ventricle (RV) as cathode and a dummy can placed subcutaneously in the left infraclavicular fossa as anode (control configuration) and (2) RV coil as cathode and the multielectrode epicardial sock with the panels connected together as anode (sock‐connected). External DFT was also tested with these electrode configurations, as well as with the epicardial sock present, but with panels disconnected from each other (sock‐disconnected). Internal DFT was higher with sock‐connected than control (24 ± 7 J vs. 16 ± 6 J, P < 0.02), but muscle contraction force at DFT was greatly reduced (1.3 ± 1.3 kg vs. 10.6 ± 2.2 kg, P < 0.0001). External defibrillation was never successful, even at 360 J, with sock‐connected, while always possible with sock‐disconnected. Conclusion: Internal defibrillation with greatly reduced skeletal muscle stimulation can be achieved using a novel electrode system that also preserves the ability to externally defibrillate when required. This system may provide a means for painless ICD therapy.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here