Premium
A Prospective Evaluation of Two Defibrillation Safety Margin Techniques in Patients with Low Defibrillation Energy Requirements
Author(s) -
STRICKBERGER S. ADAM,
MAN K. CHING,
SOUZA JOSEPH,
ZIVIN ADAM,
WEISS RAUL,
KNIGHT BRADLEY P.,
GOYAL RAJIVA,
DAOUD EMILE G.,
MORADY FRED
Publication year - 1998
Publication title -
journal of cardiovascular electrophysiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.193
H-Index - 138
eISSN - 1540-8167
pISSN - 1045-3873
DOI - 10.1111/j.1540-8167.1998.tb00865.x
Subject(s) - defibrillation , ventricular fibrillation , medicine , defibrillation threshold , cardiology , fibrillation , atrial fibrillation
Low‐Energy Defibrillation. Introduction : In patients undergoing defibrillator implantation, an appropriate defibrillation safety margin has been considered to be either 10 J or an energy equal to the defibrillation energy requirement. However, a previous clinical report suggested that a larger safety margin may be required in patients with a low defibrillation energy requirement. Therefore, the purpose of this prospective study was to compare the defibrillation efficacy of the two safety margin techniques in patients with a low defibrillation energy requirement. Methods and Results : Sixty patients who underwent implantation of a defibrillator and who had a low defibrillation energy requirement (≤ 6 J) underwent six separate inductions of ventricular fibrillation, at least 5 minutes apart. For each of the first three inductions of ventricular fibrillation, the first two shocks were equal to either the defibrillation energy requirement plus 10 J (14.6 ± 1.0 J), or to twice the defibrillation energy requirement (9.9 ± 2.3 J). The alternate technique was used for the subsequent three inductions of ventricular fibrillation. For each induction of ventricular fibrillation, the first shock success rate was 99.5%± 4.3% for shocks using the defibrillation energy requirement plus 10 J, compared to 95.0%± 17.2% for shocks at twice the defibrillation energy requirement (P = 0.02). The charge time (P < 0.0001) and the total duration of ventricular fibrillation (P < 0.0001) were each approximately 1 second longer with the defibrillation energy requirement plus 10 J technique. Conclusion : This study is the first to compare prospectively the defibrillation efficacy of two defibrillation safety margins. In patients with a defibrillation energy requirement ≤ 6 J, a higher rate of successful defibrillation is achieved with a safety margin of 10 J than with a safety margin equal to the defibrillation energy requirement.