z-logo
Premium
Use of the Saline Infusion Electrode Catheter for Improved Energy Delivery and Increased Lesion Size in Radiofrequency Catheter Ablation
Author(s) -
MITTLEMAN ROBERT S.,
HUANG SHOEI K. STEPHEN,
GUZMAN WILSON,
CUÉNOUD HENRI,
WAGSHAL ALAN B.,
PIRES LUIS A.
Publication year - 1995
Publication title -
pacing and clinical electrophysiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.686
H-Index - 101
eISSN - 1540-8159
pISSN - 0147-8389
DOI - 10.1111/j.1540-8159.1995.tb04743.x
Subject(s) - medicine , catheter , saline , ablation , radiofrequency ablation , catheter ablation , endocardium , lesion , anesthesia , surgery , nuclear medicine , cardiology
Although radiofrequency catheter ablation has undergone explosive growth as the treatment for a variety of arrhythmias, a limiting factor with the existing catheter delivery system has been the relatively small size of the lesions, which appears to be in part due to coagulum formation around the catheter tip, producing a rise in impedance and limiting energy delivery. In order to test the hypothesis that infusion of saline during radiofrequency current application can increase the lesion size and decrease the incidence of impedance rise, ten dogs were each given two radiofrequency ablation lesions to the left ventricular endocardium. One of these lesions was delivered with a standard 7 French quadripolar catheter with a 2‐mm tip, and the second was done with a 7 French Iuminal electrode catheter (also with a 2‐mm tip) for the infusion of normal saline during the delivery of radiofrequency energy. Energy was delivered for 60 seconds at either 10 or 20 watts at two distinct sites in the left ventricle for each animal. Four to 7 days following ablation, the animals were sacrificed for pathological examination. The lesions created with the saline infusion catheter were significantly bigger than those produced with a standard catheter (7.3 × 7.0 × 5.1 vs 5.2 × 4.9 × 3.5 mm, respectively, P < 0.001). At the lower energy level (10 W), none of the animals with the saline infusion catheter experienced an impedance rise versus 3 of 5 of the animals in whom the standard catheter was used. At the higher level (20 W), only 1 of 5 dogs had an impedance rise with the saline infusion catheter versus 5 of 5 with the standard catheter. We conclude that the use of a saline infusion catheter for radiofrequency energy delivery during catheter ablation produces a significantly larger lesion than that produced with a standard catheter and is effective in preventing impedance rise.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here