Premium
Stochastic Judgments in the AHP: The Measurement of Rank Reversal Probabilities
Author(s) -
Stam Antonie,
Silva A. Pedro Duarte
Publication year - 1997
Publication title -
decision sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.238
H-Index - 108
eISSN - 1540-5915
pISSN - 0011-7315
DOI - 10.1111/j.1540-5915.1997.tb01326.x
Subject(s) - pairwise comparison , ranking (information retrieval) , rank (graph theory) , analytic hierarchy process , preference , decision maker , interval (graph theory) , statistical inference , statistics , computer science , inference , mathematics , econometrics , operations research , artificial intelligence , combinatorics
This paper presents a methodology for analyzing Analytic Hierarchy Process (AHP) rankings if the pairwise preference judgments are uncertain (stochastic). If the relative preference statements are represented by judgment intervals, rather than single values, then the rankings resulting from a traditional (deterministic) AHP analysis based on single judgment values may be reversed, and therefore incorrect. In the presence of stochastic judgments, the traditional AHP rankings may be stable or unstable, depending on the nature of the uncertainty. We develop multivariate statistical techniques to obtain both point estimates and confidence intervals of the rank reversal probabilities, and show how simulation experiments can be used as an effective and accurate tool for analyzing the stability of the preference rankings under uncertainty. If the rank reversal probability is low, then the rankings are stable and the decision maker can be confident that the AHP ranking is correct. However, if the likelihood of rank reversal is high, then the decision maker should interpret the AHP rankings cautiously, as there is a subtantial probability that these rankings are incorrect. High rank reversal probabilities indicate a need for exploring alternative problem formulations and methods of analysis. The information about the extent to which the ranking of the alternatives is sensitive to the stochastic nature of the pairwise judgments should be valuable information into the decision‐making process, much like variability and confidence intervals are crucial tools for statistical inference. We provide simulation experiments and numerical examples to evaluate our method. Our analysis of rank reversal due to stochastic judgments is not related to previous research on rank reversal that focuses on mathematical properties inherent to the AHP methodology, for instance, the occurrence of rank reversal if a new alternative is added or an existing one is deleted.