Premium
Inferring an Augmented Bayesian Network to Confront a Complex Quantitative Microbial Risk Assessment Model with Durability Studies: Application to Bacillus Cereus on a Courgette Purée Production Chain
Author(s) -
Rigaux Ancelet Clémence Sophie,
Carlin Frédéric,
Nguyenthé Christophe,
Albert Isabelle
Publication year - 2013
Publication title -
risk analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.972
H-Index - 130
eISSN - 1539-6924
pISSN - 0272-4332
DOI - 10.1111/j.1539-6924.2012.01888.x
Subject(s) - markov chain monte carlo , bayesian inference , computer science , inference , bayesian network , bayesian probability , monte carlo method , bacillus cereus , mathematics , machine learning , artificial intelligence , statistics , biology , bacteria , genetics
The Monte Carlo (MC) simulation approach is traditionally used in food safety risk assessment to study quantitative microbial risk assessment (QMRA) models. When experimental data are available, performing Bayesian inference is a good alternative approach that allows backward calculation in a stochastic QMRA model to update the experts’ knowledge about the microbial dynamics of a given food‐borne pathogen. In this article, we propose a complex example where Bayesian inference is applied to a high‐dimensional second‐order QMRA model. The case study is a farm‐to‐fork QMRA model considering genetic diversity of Bacillus cereus in a cooked, pasteurized, and chilled courgette purée. Experimental data are Bacillus cereus concentrations measured in packages of courgette purées stored at different time‐temperature profiles after pasteurization. To perform a Bayesian inference, we first built an augmented Bayesian network by linking a second‐order QMRA model to the available contamination data. We then ran a Markov chain Monte Carlo (MCMC) algorithm to update all the unknown concentrations and unknown quantities of the augmented model. About 25% of the prior beliefs are strongly updated, leading to a reduction in uncertainty. Some updates interestingly question the QMRA model.