Premium
Tree‐Based Logistic Regression Approach for Work Zone Casualty Risk Assessment
Author(s) -
Weng Jinxian,
Meng Qiang,
Wang David Z. W.
Publication year - 2013
Publication title -
risk analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.972
H-Index - 130
eISSN - 1539-6924
pISSN - 0272-4332
DOI - 10.1111/j.1539-6924.2012.01879.x
Subject(s) - logistic regression , decision tree , logistic model tree , tree (set theory) , statistics , tree structure , decision tree model , crash , regression analysis , computer science , decision tree learning , work zone , mathematics , work (physics) , data mining , engineering , algorithm , mechanical engineering , mathematical analysis , binary tree , programming language
This study presents a tree‐based logistic regression approach to assessing work zone casualty risk, which is defined as the probability of a vehicle occupant being killed or injured in a work zone crash. First, a decision tree approach is employed to determine the tree structure and interacting factors. Based on the Michigan M‐94\I‐94\I‐94BL\I‐94BR highway work zone crash data, an optimal tree comprising four leaf nodes is first determined and the interacting factors are found to be airbag, occupant identity (i.e., driver, passenger), and gender. The data are then split into four groups according to the tree structure. Finally, the logistic regression analysis is separately conducted for each group. The results show that the proposed approach outperforms the pure decision tree model because the former has the capability of examining the marginal effects of risk factors. Compared with the pure logistic regression method, the proposed approach avoids the variable interaction effects so that it significantly improves the prediction accuracy.