z-logo
Premium
Exposure Assessment for Pesticide Intake from Multiple Food Products: A Bayesian Latent‐Variable Approach
Author(s) -
Chatterjee Ayona,
Horgan Graham,
Theobald Chris
Publication year - 2008
Publication title -
risk analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.972
H-Index - 130
eISSN - 1539-6924
pISSN - 0272-4332
DOI - 10.1111/j.1539-6924.2008.01124.x
Subject(s) - latent variable , pesticide , bayesian probability , environmental health , latent variable model , environmental science , pesticide residue , statistics , econometrics , mathematics , biology , medicine , ecology
Pesticide risk assessment for food products involves combining information from consumption and concentration data sets to estimate a distribution for the pesticide intake in a human population. Using this distribution one can obtain probabilities of individuals exceeding specified levels of pesticide intake. In this article, we present a probabilistic, Bayesian approach to modeling the daily consumptions of the pesticide Iprodione though multiple food products. Modeling data on food consumption and pesticide concentration poses a variety of problems, such as the large proportions of consumptions and concentrations that are recorded as zero, and correlation between the consumptions of different foods. We consider daily food consumption data from the Netherlands National Food Consumption Survey and concentration data collected by the Netherlands Ministry of Agriculture. We develop a multivariate latent‐Gaussian model for the consumption data that allows for correlated intakes between products. For the concentration data, we propose a univariate latent‐ t model. We then combine predicted consumptions and concentrations from these models to obtain a distribution for individual daily Iprodione exposure. The latent‐variable models allow for both skewness and large numbers of zeros in the consumption and concentration data. The use of a probabilistic approach is intended to yield more robust estimates of high percentiles of the exposure distribution than an empirical approach. Bayesian inference is used to facilitate the treatment of data with a complex structure.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here