z-logo
Premium
Managing the Risk of Uncertain Threshold Responses: Comparison of Robust, Optimum, and Precautionary Approaches
Author(s) -
Lempert Robert J.,
Collins Myles T.
Publication year - 2007
Publication title -
risk analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.972
H-Index - 130
eISSN - 1539-6924
pISSN - 0272-4332
DOI - 10.1111/j.1539-6924.2007.00940.x
Subject(s) - satisficing , precautionary principle , futures contract , risk analysis (engineering) , computer science , set (abstract data type) , optimal decision , robust optimization , decision analysis , operations research , management science , economics , mathematical optimization , business , artificial intelligence , engineering , mathematics , decision tree , mathematical economics , ecology , financial economics , biology , programming language
Many commentators have suggested the need for new decision analysis approaches to better manage systems with deeply uncertain, poorly characterized risks. Most notably, policy challenges such as abrupt climate change involve potential nonlinear or threshold responses where both the triggering level and subsequent system response are poorly understood. This study uses a simple computer simulation model to compare several alternative frameworks for decision making under uncertainty—optimal expected utility, the precautionary principle, and three different approaches to robust decision making—for addressing the challenge of adding pollution to a lake without triggering unwanted and potentially irreversible eutrophication. The three robust decision approaches—trading some optimal performance for less sensitivity to assumptions, satisficing over a wide range of futures, and keeping options open—are found to identify similar strategies as the most robust choice. This study also suggests that these robust decision approaches offer a quantitative, decision analytic framework that captures the spirit of the precautionary principle while addressing some of its shortcomings. Finally, this study finds that robust strategies may be preferable to optimum strategies when the uncertainty is sufficiently deep and the set of alternative policy options is sufficiently rich.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here