Premium
Differential contributions of monocyte‐ and platelet‐derived microparticles towards thrombin generation and fibrin formation and stability
Author(s) -
ALEMAN M. M.,
GARDINER C.,
HARRISON P.,
WOLBERG A. S.
Publication year - 2011
Publication title -
journal of thrombosis and haemostasis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.947
H-Index - 178
eISSN - 1538-7836
pISSN - 1538-7933
DOI - 10.1111/j.1538-7836.2011.04488.x
Subject(s) - prothrombinase , chemistry , thrombin , fibrin , tissue factor , platelet , biophysics , thromboplastin , platelet activation , thrombomodulin , monocyte , microbiology and biotechnology , coagulation , immunology , medicine , biology
Summary. Background: Microparticles (MPs) are sub‐micron vesicles shed by activated or apoptotic cells, including platelets and monocytes. Increased circulating MPs are associated with thrombosis; however, their role in thrombogenesis is poorly understood. Objective: To determine how MPs promote thrombin generation and modulate fibrin density and stability. Methods: Platelets and monocytes were isolated from healthy donors. Platelets were stimulated with calcium ionophore, thrombin receptor agonist peptide (TRAP) or TRAP/convulxin. Monocytes and human monocytic THP‐1 cells were stimulated with lipopolysaccharide (LPS). MPs were isolated, washed by high‐speed centrifugation and assessed using the following: transmission electron microscopy (TEM), Nanoparticle Tracking Analysis (NTA), flow cytometry, tissue factor (TF) activity, prothrombinase activity, thrombin generation, and clot formation, density and stability. Results: MPs from monocytes (M‐MPs) and platelets (PMPs) had similar shapes and diameters (100–300 nm). M‐MPs had TF activity (16.7 ± 2.4 p m TF per 10 6 MP), supported prothrombinase activity and triggered shorter thrombin generation lag times than buffer controls (5.4 ± 0.5 vs. 84.2 ± 4.8 min, respectively). Compared with controls, M‐MPs supported faster fibrin formation (0.24 ± 0.24 vs. 76.7 ± 15.1 mOD min −1 , respectively), 38% higher fibrin network density and higher clot stability (3.8‐fold higher turbidity in the presence of tissue plasminogen activator). In contrast, PMPs did not have TF activity and supported 2.8‐fold lower prothrombinase activity than M‐MPs. PMPs supported contact‐dependent thrombin generation, but did not independently increase fibrin network density or stability. Interestingly, PMPs increased rates of thrombin generation and fibrin formation (1.7‐ and 1.3‐fold, respectively) when mixed with THP‐1‐derived MPs. Conclusion: MPs from platelets and monocytes differentially modulate clot formation, structure and stability, suggesting unique contributions to thrombosis.