z-logo
Premium
Abstract
Author(s) -
R Collins
Publication year - 2003
Publication title -
journal of thrombosis and haemostasis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.947
H-Index - 178
eISSN - 1538-7836
pISSN - 1538-7933
DOI - 10.1111/j.1538-7836.2003.tb00089.x
Subject(s) - citation , library science , medicine , computer science
Scaling factor tuning is one of the most used method to enhance the performance of a fuzzy controller. This paper presents two intelligent tuning strategies to tune this factor. In the first strategy, a supervisor fuzzy controller SFC was designed to continuously adjust, on line, the scaling factor of the basic fuzzy controller BFC based on the error and change of error signals. In the second strategy, a neural network NN is used to do this task. Performance of the tuning strategies are compared with corresponding conventional fuzzy controller in terms of several performance measures such as steady state error, settling time, rising time, and peak overshoot. Simulation results show that SFC performance is better. The system implementation and tests are carried out using LabVIEW (V 8.2).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here