z-logo
Premium
The Colocation Quotient: A New Measure of Spatial Association Between Categorical Subsets of Points. 协同区位商:点集分类子集间空间关联性的新度量标准
Author(s) -
Leslie Timothy F.,
Kronenfeld Barry J.
Publication year - 2011
Publication title -
geographical analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.773
H-Index - 65
eISSN - 1538-4632
pISSN - 0016-7363
DOI - 10.1111/j.1538-4632.2011.00821.x
Subject(s) - categorical variable , quotient , mathematics , statistic , metric (unit) , population , statistics , humanities , cartography , geography , combinatorics , demography , sociology , philosophy , operations management , economics
This article presents a new metric we label the colocation quotient (CLQ), a measurement designed to quantify (potentially asymmetrical) spatial association between categories of a population that may itself exhibit spatial autocorrelation. We begin by explaining why most metrics of categorical spatial association are inadequate for many common situations. Our focus is on where a single categorical data variable is measured at point locations that constitute a population of interest. We then develop our new metric, the CLQ, as a point‐based association metric most similar to the cross‐ k ‐function and join count statistic. However, it differs from the former in that it is based on distance ranks rather than on raw distances and differs from the latter in that it is asymmetric. After introducing the statistical calculation and underlying rationale, a random labeling technique is described to test for significance. The new metric is applied to economic and ecological point data to demonstrate its broad utility. The method expands upon explanatory powers present in current point‐based colocation statistics.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here