Premium
A Spatial Mixture Model of Innovation Diffusion
Author(s) -
Smith Tony E.,
Song Sangyoung
Publication year - 2004
Publication title -
geographical analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.773
H-Index - 65
eISSN - 1538-4632
pISSN - 0016-7363
DOI - 10.1111/j.1538-4632.2004.tb01129.x
Subject(s) - econometrics , sample (material) , logistic regression , probabilistic logic , logit , statistics , product (mathematics) , computer science , diffusion , metropolitan area , mixed logit , statistical model , mathematics , geography , physics , thermodynamics , chemistry , geometry , archaeology , chromatography
The diffusion of new product or technical innovation over space is here modeled as an event‐based process in which the likelihood of the next adopter being in region r is influenced by two factors: (i) the potential interactions of individuals in r with current adopters in neighboring regions, and (ii) all other attributes of individuals in r that may influence their adoption propensity. The first factor is characterized by a logit model reflecting the likelihood of adoption due to spatial contacts with previous adopters, and the second by a logit model reflecting the likelihood of adoption due to other intrinsic effects. The resulting spatial diffusion process is then assumed to be driven by a probabilistic mixture of the two. A number of formal properties of this model are analyzed, including its asymptotic behavior. But the main analytical focus is on statistical estimation of parameters. Here it is shown that standard maximum‐likelihood estimates require large sample sizes to achieve reasonable results. Two estimation approaches are developed which yield more sensible results for small sample sizes. These results are applied to a small data set involving the adoption of a new Internet grocery‐shopping service by consumers in the Philadelphia metropolitan area.