z-logo
Premium
Transfusion of stored red blood cells adhere in the rat microvasculature
Author(s) -
ChinYee Ian H.,
GrayStatchuk Leslie,
Milkovich Stephanie,
Ellis Christopher G.
Publication year - 2009
Publication title -
transfusion
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.045
H-Index - 132
eISSN - 1537-2995
pISSN - 0041-1132
DOI - 10.1111/j.1537-2995.2009.02315.x
Subject(s) - leukoreduction , in vivo , fluorescein isothiocyanate , ex vivo , intravital microscopy , andrology , microcirculation , red blood cell , endothelium , hemolysis , chemistry , fluorescein , blood transfusion , medicine , biology , immunology , biochemistry , physics , microbiology and biotechnology , quantum mechanics , fluorescence
BACKGROUND: Ex vivo storage of red blood cells (RBCS) for transfusions is associated with a “storage lesion,” which decreases RBC deformability and increases RBC adhesiveness to vascular endothelium. This may impair microcirculatory flow with deleterious effects on oxygen delivery after transfusion. Previous studies have shown that human RBCs adhere to endothelial monolayers in vitro with prolonged storage and is reduced by prestorage leukoreduction (LR). The objective of this study was to determine whether duration of RBC storage and LR influence RBC adhesion in vivo in capillaries. STUDY DESIGN AND METHODS: Rat RBCs were collected and stored in CPDA‐1 under standard blood bank conditions. Three RBC products were compared: 1) fresh RBCs, less than 24 hours of storage (n = 6); 2) nonleukoreduced (NLR) RBCs stored for 7 days (n = 6); and 3) prestorage LR RBCs stored for 7 days (n = 6). RBCs were labeled with fluorescein isothiocyanate (FITC) 24 hours before transfusion and reinjected in an isovolemic manner into healthy rats. The FITC‐labeled RBCs were visualized in the extensor digitorum longus muscle using intravital video microscopy (20× magnification). The number of RBCs adherent in capillaries was counted 1 hour after transfusion in 10 random fields and the median values were compared with one‐way analysis of variance. RESULTS: Stored RBCs showed increased levels of adherence in capillaries compared to their fresh counterparts (p < 0.05). Prestorage LR decreased RBC adherence to levels equivalent to those of fresh RBCs (p < 0.05 for stored LR vs. stored NLR). CONCLUSION: Rat RBCs stored under conditions that closely mimicked clinical transfusion adhere in capillaries. The decreased RBC adherence with LR suggest a direct effect of white blood cells or their byproducts on RBC deformability and/or adhesiveness to microvascular endothelium. Further study will examine the mechanism of adherence and the impact it has on microcirculatory flow and oxygen delivery in the critically ill host.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here