Premium
Evaluation of Strength at the Acrylic–Pin Interface for Variably Treated External Skeletal Fixator Pins
Author(s) -
Brad Case Joseph,
Egger Erick L.
Publication year - 2011
Publication title -
veterinary surgery
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.652
H-Index - 79
eISSN - 1532-950X
pISSN - 0161-3499
DOI - 10.1111/j.1532-950x.2010.00774.x
Subject(s) - external fixator , medicine , fixation (population genetics) , orthodontics , bridging (networking) , acrylic resin , composite material , population , materials science , computer network , environmental health , computer science , coating
Objective: To report pullout force to failure at the acrylic–pin interface for variably treated 3.2 mm external skeletal fixator pins. Study Design: In vitro biomechanical evaluation. Sample Population: 3.2 mm external skeletal fixator pins in polymethylmethacrylate bars. Methods: 3.2 mm external skeletal fixator pins were used for each of 5 treatment groups: polished, unpolished, 3 notched, 5 notched, and machine knurled. Each pin was seated into a 2‐cm‐diameter acrylic connecting bar and tested in pullout force to failure. Each group consisted of 6 pins. The force required to remove the pins from the acrylic bar was measured and compared between groups. Results: Significant differences between treatment groups were determined ( P <.05). Within a construct group failure mode was consistent. Fracture of the acrylic bar was only seen with knurled pin ends. Conclusions: When using 2 cm acrylic bars in external skeletal fixation (ESF), a knurled pin shaft or a pin surface with 5 notches should be considered to improve the overall stability of the ESF construct.