Premium
Comparison of Canine Stifle Kinematic Data Collected with Three Different Targeting Models
Author(s) -
Torres Bryan T.,
Punke John P.,
Fu YangChieh,
Navik Judith A.,
Speas Abbie L.,
Sornborger Andrew,
Budsberg Steven C.
Publication year - 2010
Publication title -
veterinary surgery
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.652
H-Index - 79
eISSN - 1532-950X
pISSN - 0161-3499
DOI - 10.1111/j.1532-950x.2010.00666.x
Subject(s) - sagittal plane , kinematics , medicine , orthodontics , gait , biomechanics , gait analysis , anatomy , physical medicine and rehabilitation , physics , classical mechanics
Objective: To model the kinematics of the canine stifle in 3 dimensions using the Joint Coordinate System (JCS) and compare the JCS method with linear and segmental models. Study Design: In vivo biomechanical study. Animals: Normal adult mixed breed dogs (n=6). Methods: Dogs had 10 retroreflective markers affixed to the skin on the right pelvic limb. Dogs were walked and trotted 5 times through the calibrated space and the procedure was repeated 5 days later. Sagittal flexion and extension angle waveforms acquired during each trial with all 3 models (JCS, Linear, and Segmental) were produced simultaneously during each gait. The JCS method provided additional internal/external and abduction/adduction angles. Comparison of sagittal flexion and extension angle waveforms was performed with generalized indicator function analysis (GIFA) and Fourier analysis. A normalization procedure was performed. Results: Each model provided consistent equivalent sagittal flexion–extension data. The JCS provided consistent additional internal/external and abduction/adduction. Sagittal waveform differences were found between methods and testing days for each dog at a walk and a trot with both GIFA and Fourier analysis. After normalization, differences were less with Fourier analysis and were unaltered with GIFA. Conclusions: Whereas all methods produced similar flexion–extension waveforms, JCS provided additional valuable data. Clinical Relevance: The JCS model provided sagittal plane flexion/extension data as well as internal/external rotation and abduction/adduction data.