Premium
Life Cycle Greenhouse Gas Emissions of Coal‐Fired Electricity Generation
Author(s) -
Whitaker Michael,
Heath Garvin A.,
O’Donoughue Patrick,
Vorum Martin
Publication year - 2012
Publication title -
journal of industrial ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.377
H-Index - 102
eISSN - 1530-9290
pISSN - 1088-1980
DOI - 10.1111/j.1530-9290.2012.00465.x
Subject(s) - greenhouse gas , life cycle assessment , coal , environmental science , electricity generation , pulverized coal fired boiler , combustion , environmental engineering , waste management , engineering , chemistry , economics , production (economics) , power (physics) , ecology , physics , organic chemistry , quantum mechanics , biology , macroeconomics
Summary This systematic review and harmonization of life cycle assessments (LCAs) of utility‐scale coal‐fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO 2 ‐equivalent per kilowatt‐hour (g CO 2 ‐eq/kWh) (interquartile range [IQR]= 890–1,130 g CO 2 ‐eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal‐fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta‐analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates (−53% in IQR magnitude) while maintaining a nearly constant central tendency (−2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first‐order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.