z-logo
Premium
Ethanol Exposure in Early Adolescence Inhibits Intrinsic Neuronal Plasticity via Sigma‐1 Receptor Activation in Hippocampal CA1 Neurons
Author(s) -
Sabeti Jilla
Publication year - 2011
Publication title -
alcoholism: clinical and experimental research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.267
H-Index - 153
eISSN - 1530-0277
pISSN - 0145-6008
DOI - 10.1111/j.1530-0277.2010.01419.x
Subject(s) - long term potentiation , population spike , excitatory postsynaptic potential , nmda receptor , ltp induction , hippocampal formation , neuroscience , chemistry , synaptic plasticity , schaffer collateral , neurotransmission , hippocampus , population , neural facilitation , postsynaptic potential , receptor , biology , inhibitory postsynaptic potential , medicine , biochemistry , environmental health
Background:  We demonstrated previously that rats exposed to chronic intermittent ethanol (CIE) vapors in early adolescence show increased magnitudes of long‐term potentiation (LTP) of excitatory transmission when recorded at dendritic synapses in hippocampus. Large amplitude LTP following CIE exposure is mediated by sigma‐1 receptors; however, not yet addressed is the role of sigma‐1 receptors in modulating the intrinsic properties of neurons to alter their action potential firing during LTP. Methods:  Activity‐induced plasticity of spike firing was investigated using rat hippocampal slice recordings to measure changes in both field excitatory postsynaptic potentials (fEPSPs) and population spikes (pop. spikes) concomitantly at dendritic inputs and soma of CA1 pyramidal neurons, respectively. Results:  We observed unique modifications in plasticity of action potential firing in hippocampal slices from CIE exposed adolescent rats, where the induction of large amplitude LTP by 100 Hz stimulations was accompanied by reduced CA1 neuronal excitability––reflected as decreased pop. spike efficacy and impaired activity‐induced fEPSP‐to‐spike (E‐S) potentiation. In contrast, LTP induction in ethanol‐naïve control slices resulted in increased spike efficacy and robust E‐S potentiation. E‐S potentiation impairments emerged at 24 hours after CIE treatment cessation, but not before the alcohol withdrawal period, and were restored with bath‐application of the sigma‐1 receptor selective antagonist BD1047, but not the NMDA receptor antagonist d ‐AP5. Further evidence revealed a significantly shortened somatic fEPSP time course in adolescent CIE‐withdrawn hippocampal slices during LTP; however, paired‐pulse data show no apparent correspondence between E‐S dissociation and altered recurrent feedback inhibition. Conclusions:  Results here suggest that acute withdrawal from adolescent CIE exposure triggers sigma‐1 receptors that act to depress the efficacy of excitatory inputs in triggering action potentials during LTP. Such withdrawal‐induced depression of E‐S plasticity in hippocampus probably entails sigma‐1 receptor modulation of 1 or several voltage‐gated ion channels controlling the neuronal input–output dynamics.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here