Premium
LOCALIZATION OF IRON WITHIN CENTRIC DIATOMS OF THE GENUS THALASSIOSIRA 1
Author(s) -
Nuester Jochen,
Vogt Stefan,
Twining Benjamin S.
Publication year - 2012
Publication title -
journal of phycology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.85
H-Index - 127
eISSN - 1529-8817
pISSN - 0022-3646
DOI - 10.1111/j.1529-8817.2012.01165.x
Subject(s) - thalassiosira weissflogii , thalassiosira pseudonana , biology , polyphosphate , endosymbiosis , diatom , zinc , intracellular , stoichiometry , phosphorus , botany , phosphate , materials science , nutrient , chemistry , biochemistry , metallurgy , phytoplankton , gene , ecology , plastid , chloroplast , organic chemistry
The cellular iron (Fe) quota of centric diatoms has been shown to vary in response to the ambient dissolved Fe concentration; however, it is not known how centric diatoms store excess intracellular Fe. Here, we use synchrotron X‐ray fluorescence (SXRF) element mapping to identify Fe storage features in cells of Thalassiosira pseudonana Hasle et Heimdal and Thalassiosira weissflogii G. A. Fryxell et Hasle grown at low and high Fe concentrations. Localized intracellular Fe storage features, defined as anomalously high Fe concentrations in regions of relatively low phosphorus (P), sulfur (S), silicon (Si), and zinc (Zn), were twice as common in T. weissflogii cells grown at high Fe compared to low‐Fe cells. Cellular Fe quotas of this strain increased 2.9‐fold, the spatial extent of the features increased 4.6‐fold, and the Fe content of the features increased 14‐fold under high‐Fe conditions, consistent with a vacuole storage mechanism. The element stoichiometry of the Fe features is consistent with polyphosphate‐bound Fe as a potential vacuolar Fe storage pool. Iron quotas increased 2.5‐fold in T. pseudonana grown at high Fe, but storage features contained only 2‐fold more Fe and did not increase in size compared to low‐Fe cells. The differences in Fe storage observed between T. pseudonana and T. weissflogii may have been due to differences in the growth states of the cultures.