Premium
LIGHT DEPENDENCY OF PHOTOSYNTHETIC RECOVERY DURING WETTING AND THE ACCLIMATION OF PHOTOSYNTHETIC APPARATUS TO LIGHT FLUCTUATION IN A TERRESTRIAL CYANOBACTERIUM NOSTOC COMMUNE 1
Author(s) -
Chen Zhen,
Lu GaoFei,
Chen Shuo,
Chen XiongWen
Publication year - 2011
Publication title -
journal of phycology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.85
H-Index - 127
eISSN - 1529-8817
pISSN - 0022-3646
DOI - 10.1111/j.1529-8817.2011.01033.x
Subject(s) - dcmu , photosynthesis , photosystem ii , biology , light intensity , plastoquinone , photochemistry , acclimatization , darkness , oxygen evolution , quenching (fluorescence) , cyanobacteria , biophysics , oxygen , botany , chemistry , fluorescence , chloroplast , biochemistry , thylakoid , optics , quantum mechanics , electrochemistry , physics , electrode , gene , bacteria , genetics , organic chemistry
The PSII photochemical activity in a terrestrial cyanobacterium Nostoc commune Vaucher ex Bornet et Flahault during rewetting was undetectable in the dark but was immediately recognized in the light. The maximum quantum yield of PSII ( F v / F m ) during rewetting in the light rose to 85% of the maximum within ∼30 min and slowly reached the maximum within 6 h, while with rewetting in the darkness for 6 h and then exposure to light the recovery of F v / F m required only ∼3 min. These results suggested that recovery of photochemical activity might depend on two processes, light dependence and light independence, and the activation of photosynthetic recovery in the initial phase was severely light dependent. The inhibitor experiments showed that the recovery of F v / F m was not affected by chloramphenicol (CMP), but severely inhibited by 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU) in the light, suggesting that the light‐dependent recovery of photochemical activity did not require de novo protein synthesis but required activation of PSII associated with electron flow to plastoquinone. Furthermore, the test indicated that the lower light intensity and the red light were of benefit to its activation of photochemical activity. In an outdoor experiment of diurnal changes of photochemical activity, our results showed that PSII photochemical activity was sensitive to light fluctuation, and the nonphotochemical quenching (NPQ) was rapidly enhanced at noon. Furthermore, the test suggested that the repair of PSII by de novo protein synthesis played an important role in the acclimation of photosynthetic apparatus to high light, and the heavily cloudy day was more beneficial for maintaining high photochemical activity.