Premium
MONITORING RAPID VALVE FORMATION IN THE PENNATE DIATOM NAVICULA SALINARUM (BACILLARIOPHYCEAE) 1
Author(s) -
Hazelaar Sandra,
Van Der Strate Han J.,
Gieskes Winfried W. C.,
Vrieling Engel G.
Publication year - 2005
Publication title -
journal of phycology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.85
H-Index - 127
eISSN - 1529-8817
pISSN - 0022-3646
DOI - 10.1111/j.1529-8817.2005.04131.x
Subject(s) - diatom , biology , navicula , nitzschia , botany , morphogenesis , thalassiosira pseudonana , frustule , silicic acid , biophysics , biochemistry , ecology , gene , chemical engineering , phytoplankton , engineering , nutrient
After each division of a diatom cell, a new siliceous hypovalve is formed inside the silica deposition vesicle (SDV). We present the sequence of this early formation of the new valve in the pennate marine diatom Navicula salinarum (Grunow) Hustedt, visualized by using the fluorescent probe 2‐(4‐pyridyl)‐5‐((4‐(2‐dimethylaminoethylamino‐carbamoyl)methoxy)phenyl)oxazole (PDMPO). Our observations confirm that two‐dimensional expansion of the growing valve is a rapid process of no more than 15 min; three‐dimensional completion of the valve appears to be slower, lasting most of the time valve formation takes. The results are relevant to studies of the timing of molecular processes involved in valve formation (i.e. the bio‐ and morphogenesis of the SDV) in relation to uptake and transport of silicic acid. Use of this probe helps us to identify specific developmental stages for further detail analysis of diatom basilica formation, which eventually could lead to obtaining enriched SDV fractions.