Premium
Nociceptin and its receptor in rat dorsal root ganglion neurons in neuropathic and inflammatory pain models: implications on pain processing
Author(s) -
Chen Yong,
Sommer Claudia
Publication year - 2006
Publication title -
journal of the peripheral nervous system
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1
H-Index - 67
eISSN - 1529-8027
pISSN - 1085-9489
DOI - 10.1111/j.1529-8027.2006.0093.x
Subject(s) - nociceptin receptor , dorsal root ganglion , atf3 , neuropathic pain , medicine , receptor , nerve injury , sciatic nerve , neuroscience , receptor expression , anesthesia , chemistry , opioid , biology , anatomy , dorsum , opioid peptide , gene expression , biochemistry , promoter , gene
Nociceptin (NC), by activating its receptor, the opioid receptor‐like 1 (ORL1) receptor, exerts an effect on a number of functions in the nervous system including locomotion, learning and memory, and processing of pain signals. Data on the expression of NC and ORL1 receptor in dorsal root ganglion (DRG) neurons and on its modulation after nerve injury and inflammation are controversial. We therefore sought to investigate the immunoreactivity (IR) of NC and ORL1 receptor in DRG neurons in two pain models, a pure neuropathic pain model, namely partial sciatic nerve transection (PST), and an inflammatory pain model, complete Freund’s adjuvant (CFA) injection into the hindpaw. In intact DRG neurons, both NC and ORL1 receptor IR were present in mainly small‐ and medium‐sized neurons, NC IR in 31% and ORL1 receptor IR in 33% of all neuronal profiles. Both NC and ORL1 receptor IR were upregulated 7 days after nerve injury (to 56 and 55%) and inflammation (to 53 and 48%), respectively. Activating transcription factor 3 (ATF3), a neuronal marker of nerve injury, was induced in DRG neurons 7 and 14 days after PST and 7 days after CFA injection. Double labeling with ATF3 revealed expression of NC and ORL1 receptor in intact as well as in injured primary afferent neurons. Thus, NC and the ORL1 receptor may be involved in the modulation of neuropathic and inflammatory pain at the level of the primary afferent neuron.