z-logo
Premium
Clinical, functional, and neurophysiologic assessment of dysplastic cortical networks: Implications for cortical functioning and surgical management
Author(s) -
Duchowny Michael
Publication year - 2009
Publication title -
epilepsia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.687
H-Index - 191
eISSN - 1528-1167
pISSN - 0013-9580
DOI - 10.1111/j.1528-1167.2009.02291.x
Subject(s) - cortical dysplasia , neuroscience , epileptogenesis , functional magnetic resonance imaging , psychology , cortex (anatomy) , magnetic resonance imaging , epilepsy surgery , epilepsy , medicine , radiology
Summary Cortical malformations are highly epileptogenic lesions associated with complex, unanticipated, and often aberrant electrophysiologic and functional relationships. These relationships are inextricably linked to widespread cortical networks subserving eloquent functions, particularly language and motor ability. Cytomegalic neurons but not balloon cells in Palmini type 2 dysplastic cortex are intrinsically hyperexcitable and contribute to local epileptogenesis and functional responsiveness. However, there is much evidence that focal cortical dysplasia is rarely a localized or even regional process, and is a functionally, electrophysiologically, and ultimately clinically integrated neural network disorder. Not surprisingly, malformed cortex is implicated in cognitive dysfunction, particularly disturbances of linguistic processing. An understanding of these relationships is critical for successful epilepsy surgery. Gains in surgical prognosis rely on multiple diagnostic modalities to delineate complex anatomic, electrophysiologic, and functional relationships in magnetic resonance imaging (MRI)–negative patients with rates of seizure‐freedom roughly comparable to lesional patients

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here