Premium
SCN1A duplications and deletions detected in Dravet syndrome: Implications for molecular diagnosis
Author(s) -
Marini Carla,
Scheffer Ingrid E.,
Nabbout Rima,
Mei Davide,
Cox Kathy,
Dibbens Leanne M.,
McMahon Jacinta M.,
Iona Xenia,
Carpintero Rochio Sanchez,
Elia Maurizio,
Cilio Maria Roberta,
Specchio Nicola,
Giordano Lucio,
Striano Pasquale,
Gennaro Elena,
Cross J. Helen,
Kivity Sara,
Neufeld Miriam Y.,
Afawi Zaid,
Andermann Eva,
Keene Daniel,
Dulac Olivier,
Zara Federico,
Berkovic Samuel F.,
Guerrini Renzo,
Mulley John C.
Publication year - 2009
Publication title -
epilepsia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.687
H-Index - 191
eISSN - 1528-1167
pISSN - 0013-9580
DOI - 10.1111/j.1528-1167.2009.02013.x
Subject(s) - multiplex ligation dependent probe amplification , dravet syndrome , copy number variation , gene duplication , genetics , comparative genomic hybridization , biology , epilepsy , exon , gene , chromosome , genome , neuroscience
Summary Objective: We aimed to determine the type, frequency, and size of microchromosomal copy number variations (CNVs) affecting the neuronal sodium channel α 1 subunit gene ( SCN1A ) in Dravet syndrome (DS), other epileptic encephalopathies, and generalized epilepsy with febrile seizures plus (GEFS+). Methods: Multiplex ligation‐dependent probe amplification (MLPA) was applied to detect SCN1A CNVs among 289 cases (126 DS, 97 GEFS+, and 66 with other phenotypes). CNVs extending beyond SCN1A were further characterized by comparative genome hybridization (array CGH). Results: Novel SCN1A CNVs were found in 12.5% of DS patients where sequence‐based mutations had been excluded. We identified the first partial SCN1A duplications in two siblings with typical DS and in a patient with early‐onset symptomatic generalized epilepsy. In addition, a patient with DS had a partial SCN1A amplification of 5–6 copies. The remaining CNVs abnormalities were four partial and nine whole SCN1A deletions involving contiguous genes. Two CNVs (a partial SCN1A deletion and a duplication) were inherited from a parent, in whom there was mosaicism. Array CGH showed intragenic deletions of 90 kb and larger, with the largest of 9.3 Mb deleting 49 contiguous genes and extending beyond SCN1A.Discussion: Duplication and amplification involving SCN1A are now added to molecular mechanisms of DS patients. Our findings showed that 12.5% of DS patients who are mutation negative have MLPA‐detected SCN1A CNVs with an overall frequency of about 2–3%. MLPA is the established second‐line testing strategy to reliably detect all CNVs of SCN1A from the megabase range down to one exon. Large CNVs extending outside SCN1A and involving contiguous genes can be precisely characterized by array CGH.