Premium
Mineralization and Decomposition Rates in Restored Pine Fens
Author(s) -
Tarvainen Oili,
Laine Anna M.,
Peltonen Mari,
Tolvanen Anne
Publication year - 2013
Publication title -
restoration ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.214
H-Index - 100
eISSN - 1526-100X
pISSN - 1061-2971
DOI - 10.1111/j.1526-100x.2012.00930.x
Subject(s) - peat , mineralization (soil science) , environmental science , plant litter , soil science , forestry , agronomy , ecosystem , soil water , ecology , biology , geography
Growing public interest in conserving peatlands has created a need for restoration and rapid indicators of progress in peat formation. Vegetation and hydrological indicators are commonly assessed, but changes in mineralization and decomposition rates might better indicate when peat formation is underway in restored peatlands. In Finland, we investigated differences in mineralization and decomposition in the upper peat layer of five undrained and eight drained Pinus ‐dominated fens from 2006 to 2009. Forestry‐drained fens were restored in 2007 by harvesting either whole trees or only stems, and by damming and filling ditches. Before restoration, net N mineralization rate was slightly higher in the drained than in undrained fens, whereas soil pH and Betula leaf litter decomposition rate were lower. After restoration, net N mineralization rate was similar for the undrained and restored fens, except near ditches after stem harvest. Also, soil pH and decomposition rate of Betula leaf litter became similar for undrained and restored fens. We conclude that whole tree harvest is a more suitable method for peatland restoration than stem harvest and that mineralization and decomposition rates are suitable indicators for peat formation after restoration.