z-logo
Premium
Soil and Fertilizer Amendments and Edge Effects on the Floral Succession of Pulverized Fuel Ash
Author(s) -
Shaw Peter
Publication year - 2009
Publication title -
restoration ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.214
H-Index - 100
eISSN - 1526-100X
pISSN - 1061-2971
DOI - 10.1111/j.1526-100x.2007.00345.x
Subject(s) - agronomy , halophyte , environmental science , biology , ecology , salinity
Plots of fresh pulverized fuel ash (PFA, an industrial waste) were inoculated with soils from existing PFA sites and fertilizers in a factorial design, then left unmanaged for 12 years during which time the floral development and soil chemistry were monitored annually. For the first 3 years, the site supported a sparse mix of chenopods (including the scarce Chenopodium glaucum ) and halophytes. As salinity declined, ruderals, legumes, and grasses plus the fire‐site moss Funaria hygrometrica colonized, followed by Festuca arundinacea grassland (NVC community MG12) and Hippophae rhamnoides scrub. Dactylorhiza incarnata (orchidacea) appeared after 7 years, but only in plots that had received soil from existing orchid colonies. Four years later, a larger second generation of Dactylorhiza appeared, but only in the central zone of the site where vegetation was thinnest. By year 12, the site was dominated by coarse grasses and scrub, with early successional species persisting only in the sparsely vegetated center, where nitrate levels were lowest. This edge effect is interpreted as centripetal encroachment, a process of potentially wider concern for the conservation of low‐fertility habitat patches. Overall, seed bank inoculation seems to have introduced few but desirable species ( D. incarnata , Pyrola rotundifolia , some halophytes, and annuals), whereas initial application of organic fertilizer had long‐lasting (≥10 years) effects on cover and soil composition.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here