Premium
Forest Restoration in Urbanizing Landscapes: Interactions Between Land Uses and Exotic Shrubs
Author(s) -
Borgmann Kathi L.,
Rodewald Amanda D.
Publication year - 2005
Publication title -
restoration ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.214
H-Index - 100
eISSN - 1526-100X
pISSN - 1061-2971
DOI - 10.1111/j.1526-100x.2005.00042.x
Subject(s) - riparian zone , honeysuckle , geography , land cover , riparian forest , agroforestry , ecology , restoration ecology , introduced species , land use , forestry , environmental science , biology , habitat , medicine , alternative medicine , traditional chinese medicine , pathology
Preventing and controlling exotic plants remains a key challenge in any ecological restoration, and most efforts are currently aimed at local scales. We combined local‐ and landscape‐scale approaches to identify factors that were most closely associated with invasion of riparian forests by exotic shrubs (Amur honeysuckle [ Lonicera maackii ] and Tatarian honeysuckle [ L. tatarica ]) in Ohio, U.S.A. Twenty sites were selected in mature riparian forests along a rural–urban gradient (<1–47% urban land cover). Within each site, we measured percent cover of Lonicera spp. and native trees and shrubs, percent canopy cover, and facing edge aspect. We then developed 10 a priori models based on local‐ and landscape‐level variables that we hypothesized would influence percent cover of Lonicera spp. within 25 m of the forest edge. To determine which of these models best fit the data, we used an information‐theoretic approach and Akaike's information criterion. Percent cover of Lonicera was best explained by the proportion of urban land cover within 1 km of riparian forests. In particular, percent cover of Lonicera was greater in forests within more urban landscapes than in forests within rural landscapes. Results suggest that surrounding land uses influence invasion by exotic shrubs, and explicit consideration of land uses may improve our ability to predict or limit invasion. Moreover, identifying land uses that increase the risk of invasion may inform restoration efforts.