z-logo
Premium
Analysis of Pulsatile and Nonpulsatile Blood Flow Effects in Different Degrees of Stenotic Vasculature
Author(s) -
Jung Jae Seung,
Son Kuk Hui,
Ahn Chi Bum,
Lee Jung Joo,
Son Ho Sung,
Sun Kyung
Publication year - 2011
Publication title -
artificial organs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.684
H-Index - 76
eISSN - 1525-1594
pISSN - 0160-564X
DOI - 10.1111/j.1525-1594.2011.01361.x
Subject(s) - pulsatile flow , hemodynamics , stenosis , cannula , medicine , blood flow , cardiology , surgery
Vessel lumens that have been chronically narrowed by atherosclerosis should be increased in flow velocity and intrastenotic area pressure to maintain an equal flow. This might be followed by a decrease in hemodynamic energy, leading to a reduction of tissue perfusion. In this study, we compared hemodynamic energies according to degrees of stenotic vasculature between pulsatile flow and nonpulsatile flow. Cannuale with 25, 50, and 75% diameter stenosis (DS) were located at the outlet cannula. Using the Korea Hybrid ventricular assist device (KH‐VAD) (pulsatile pump: group A) and Biopump (nonpulsatile pump: group B), constant flow of 2 L/min was maintained then real‐time flow and velocity in the proximal and distal part of the stenotic cannula were measured. The hemodynamic energies of two groups were compared. At 75% DS, proximal energy equivalent pressure (EEP) delivered to the distal end was only 41.9% (group A) and 42.5% (group B). As the percent EEP fell below 10%, pulsatility disappeared from the 50% stenosis in group A. The surplus hemodynamic energy (SHE) of group B at all degrees of stenosis must have been 0, which was also the case of group A at 75% stenosis. This research evaluated the hemodynamic energy on various degrees of DS in both pulsatile and nonpulsatile flow with mock system. Using a pulsatile pump, pulsatility disappeared above 50% DS while hemodynamic energy was maintained. Therefore, our results suggest that pulsatile flow has a better effect than nonpulsatile flow in reserving hemodynamic energy after stenotic lesion.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here