Premium
Immunoisolated Chromaffin Cells Implanted Into the Subarachnoid Space of Rats Reduce Cold Allodynia in a Model of Neuropathic Pain: A Novel Application of Microencapsulation Technology
Author(s) -
Kim Yu Mi,
Jeon Young Hoon,
Jin Gwang Chun,
Lim Jeong Ok,
Baek Woon Yi
Publication year - 2004
Publication title -
artificial organs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.684
H-Index - 76
eISSN - 1525-1594
pISSN - 0160-564X
DOI - 10.1111/j.1525-1594.2004.00024.x
Subject(s) - chromaffin cell , subarachnoid space , chronic pain , neuropathic pain , medicine , allodynia , in vivo , anesthesia , adrenal medulla , catecholamine , endocrinology , hyperalgesia , biology , nociception , receptor , cerebrospinal fluid , microbiology and biotechnology , psychiatry
Intrathecal transplants of adrenal medullary chromaffin cells relieve chronic pain by secreting catecholamines, opioids, and other neuroactive substances. Recently, macrocapsules with semipermeable membranes were used to isolate immunologically xenogenic chromaffin cells, but the poor viability in vivo of the encapsulated chromaffin cells limited the usefulness of this method. In this study, we used a novel method of encapsulation to increase the viability of chromaffin cells. We found that microencapsulated chromaffin cells that were implanted into the subarachnoid space of rats relieved cold allodynia in a model of neuropathic pain. Furthermore, microencapsulated chromaffin cells were morphologically normal and retained their functionality. These findings suggest that the intrathecal placement of microencapsulated chromaffin cells might be a useful method for treating chronic pain.