Premium
Effects of Surface Roughness on Mechanical Hemolysis
Author(s) -
Umezu Mitsuo,
Yamada Takashi,
Fujimasu Hiromi,
Fujimoto Tetsuo,
Ranawake Manoja,
Nogawa Atsuhiko,
Kijima Toshihiko
Publication year - 1996
Publication title -
artificial organs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.684
H-Index - 76
eISSN - 1525-1594
pISSN - 0160-564X
DOI - 10.1111/j.1525-1594.1996.tb04484.x
Subject(s) - hemolysis , surface roughness , surface finish , materials science , chemistry , composite material , medicine
Previous in vitro hemolysis test results showed that an inlet taper or a round corner in the leading edge of a stenotic connector played an important role in the reduction of hemolysis. However, computational fluid dynamics (CFD) analysis of these results indicated that the shear rate and hemolysis level were not always related to each other. Then, further research was performed, focusing on the effects of surface roughness on hemolysis. The results thus far can be summarized as threefold. First, the rate of hemolysis occurring at an abrupt change in the stenotic section was different if the longitudinal length of the stenosis was changed. The level of plasma‐free hemoglobin after 6 h of circulation was decreased from 280 mg/dl to 70 mg/dl when the longitudinal length was shortened from 15 mm to 1 mm. Second, a comparison of hemolysis rates in identical stenotic connectors with differing surface roughness (Ra = 0.45 and 1.35 u.m) revealed that a smooth surface achieved as much as an 80% reduction in the rate of hemolysis. Third, the in vitro hemolysis results obtained were further defined through CFD analysis.