Premium
Implanted Artificial Heart with Radioisotope Power Source
Author(s) -
Shumakov Valeriy I.,
Griaznov Georgiy M.,
Zhemchuzhnikov Genri N.,
Kiselev Iuriy M.,
Osipov Anatoliy P.
Publication year - 1983
Publication title -
artificial organs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.684
H-Index - 76
eISSN - 1525-1594
pISSN - 0160-564X
DOI - 10.1111/j.1525-1594.1983.tb04164.x
Subject(s) - artificial heart , venous return curve , hemodynamics , boiler (water heating) , cardiac output , biomedical engineering , materials science , medicine , cardiology , engineering , waste management
Summary: An atomic artificial heart for orthotopic implantation was developed with the following characteristics: volume, 1.2 L; weight, 1.5 kg; radioisotope power, 45 W; operating life, up to 5 years; hemodynamics, similar to natural hemodynamics. The artificial heart includes a thermal drive with systems for regulating power, feeding steam into the cylinders, return of the condensate to the steam generator, and delivery of power to the ventricles and heat container. The artificial heart is placed in an artificial pericardium partially filled with physiologic solution. It uses a steam engine with two operating cylinders that separately drive the left and right ventricles. There is no electronic control system in the proposed design. The operation of the heat engine is controlled, with preservation of autoregulation by the vascular system of the body. The separate drives for the ventricles is of primary importance as it provides for operation of the artificial heart through control of cardiac activity by venous return. Experimental testing on a hydromechanical bench demonstrated effective autoregulation.