z-logo
Premium
Sequence and function of basic helix–loop–helix proteins required for stomatal development in Arabidopsis are deeply conserved in land plants
Author(s) -
MacAlister Cora A.,
Bergmann Dominique C.
Publication year - 2011
Publication title -
evolution and development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.651
H-Index - 78
eISSN - 1525-142X
pISSN - 1520-541X
DOI - 10.1111/j.1525-142x.2011.00468.x
Subject(s) - biology , guard cell , arabidopsis , lineage (genetic) , physcomitrella patens , transcription factor , gene , genetics , microbiology and biotechnology , cell division , genome , evolutionary biology , botany , cell , mutant
SUMMARY Stomata are a broadly conserved feature of land plants with a crucial role regulating transpiration and gas exchange between the plant and atmosphere. Stereotyped cell divisions within a specialized cell lineage of the epidermis generate stomata and define the pattern of their distribution. The behavior of the stomatal lineage varies in its detail among different plant groups, but general features include asymmetric cell divisions and an immediate precursor (the guard mother cell [GMC]) that divides symmetrically to form the pair of cells that will differentiate into the guard cells. In Arabidopsis , the closely related basic helix–loop–helix (bHLH) subgroup Ia transcription factors SPEECHLESS, MUTE, and FAMA promote asymmetric divisions, the acquisition of GMC identity and guard cell differentiation, respectively. Genome sequence data indicate that these key positive regulators of stomatal development are broadly conserved among land plants. While orthologies can be established among individual family members within the angiosperms, more distantly related groups contain subgroup Ia bHLHs of unclear affinity. We demonstrate group Ia members from the moss Physcomitrella patens can partially complement MUTE and FAMA and recapitulate gain of function phenotypes of group Ia genes in multiple steps in the stomatal lineage in Arabidopsis . Our data are consistent with a mechanism whereby a multifunctional transcription factor underwent duplication followed by specialization to provide the three (now nonoverlapping) functions of the angiosperm stomatal bHLHs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here