Premium
Evolutionary redeployment of a biosynthetic module: expression of eye pigment genes vermilion , cinnabar , and white in butterfly wing development
Author(s) -
Reed Robert D.,
Nagy Lisa M.
Publication year - 2005
Publication title -
evolution and development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.651
H-Index - 78
eISSN - 1525-142X
pISSN - 1520-541X
DOI - 10.1111/j.1525-142x.2005.05036.x
Subject(s) - biology , genetics , gene , pigment , evolutionary biology , organic chemistry , chemistry
Summary Ommochromes are common among insects as visual pigments; however, in some insect lineages ommochromes have evolved novel functions such as integument coloration and tryptophan secretion. One role of ommochromes, as butterfly wing pigments, can apparently be traced to a single origin in the family Nymphalidae. The synthesis and storage of ommochrome pigments is a complex process that requires the concerted activity of multiple enzyme and transporter molecules. To help understand how this subcellular process appeared in a novel context during evolution, we explored aspects of ommochrome pigment development in the wings of the nymphalid butterfly Vanessa cardui . Using chromatography and radiolabeled precursor incorporation studies we identified the ommochrome xanthommatin as a V. cardui wing pigment. We cloned fragments of two ommochrome enzyme genes, vermilion and cinnabar , and an ommochrome precursor transporter gene, white , and found that these genes were transcribed in wing tissue at relatively high levels during wing scale development. Unexpectedly, however, the spatial patterns of transcription were not associated in a simple way with adult pigment patterns. Although our results suggest that the evolution of ommochrome synthesis in butterfly wings likely arose in part through novel regulation of vermilion , cinnabar , and white transcription, they also point to a complex relationship between transcriptional prepatterns and pigment synthesis in V. cardui .