Premium
Coupled role of deformation and metamorphism in the construction of inverted metamorphic sequences: an example from far‐northwest Nepal
Author(s) -
YAKYMCHUK C.,
GODIN L.
Publication year - 2012
Publication title -
journal of metamorphic geology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.639
H-Index - 114
eISSN - 1525-1314
pISSN - 0263-4929
DOI - 10.1111/j.1525-1314.2012.00979.x
Subject(s) - geology , metamorphic rock , metamorphism , kyanite , sillimanite , shear zone , main central thrust , metamorphic core complex , gneiss , schist , foreland basin , migmatite , geothermobarometry , shearing (physics) , geochemistry , petrology , quartz , tectonics , seismology , paleontology , biotite , extensional definition , geotechnical engineering
In the Greater Himalayan sequence of far northwestern Nepal, detailed mapping, thermobarometry, and microstructure analysis are used to test competing models of the construction of Himalayan inverted metamorphism. The inverted Greater Himalayan sequence, which is characterized by an increase in peak metamorphic temperatures up structural section from 580 to 720 °C, is divided into two tectonometamorphic domains. The lower domain contains garnet‐ to kyanite‐zone rocks whose peak metamorphic assemblages suggest a metamorphic field pressure gradient that increases up structural section from 8 to 11 kbar, and which developed during top‐to‐the‐south directed shearing. The upper portion of the Greater Himalayan sequence is composed of kyanite‐ and sillimanite‐zone migmatitic gneisses that contain a metamorphic pressure gradient that decreases up structural section from 10 to 5 kbar. The lower and upper portions of the Greater Himalayan sequence are separated by a metamorphic discontinuity that spatially coincides with the base of the lowest migmatite unit. Temperatures inferred from quartz recrystallization mechanisms and the opening angles of quartz c‐ axis fabrics increase up section through the Greater Himalayan sequence from ∼530 to >700 °C and yield similar results to peak metamorphic temperatures determined by thermometry. The observations from the Greater Himalayan sequence in far northwestern Nepal are consistent with numerical predictions of channel‐flow tectonic models, whereby the upper hinterland part evolved as a ductile southward tunnelling mid‐crustal channel and the lower foreland part ductily accreted in a critical‐taper system at the leading edge of the extruding channel. The boundary between the upper and lower portions of the Greater Himalayan sequence is shown to represent a foreland–hinterland transition zone that is used to reconcile the different proposed tectonic styles documented in western Nepal.