z-logo
Premium
Eclogitization of the Monviso ophiolite (W. Alps) and implications on subduction dynamics
Author(s) -
ANGIBOUST S.,
LANGDON R.,
AGARD P.,
WATERS D.,
CHOPIN C.
Publication year - 2012
Publication title -
journal of metamorphic geology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.639
H-Index - 114
eISSN - 1525-1314
pISSN - 0263-4929
DOI - 10.1111/j.1525-1314.2011.00951.x
Subject(s) - geology , subduction , ophiolite , blueschist , lithosphere , geochemistry , continental collision , eclogitization , greenschist , tectonics , eclogite , petrology , metamorphism , seismology , oceanic crust
To constrain deep (40–100 km) subduction dynamics, extensive P–T data are provided on the eclogitic Monviso ophiolite derived from the subducted Liguro‐Piemontese oceanic lithosphere (which was exhumed, together with associated continental units, before the Alpine collision). The Monviso ophiolite has so far been interpreted either as a fossilized subduction channel, with tectonic blocks detached from the slab at different depths and gathered in a weak serpentinized matrix, or as a more or less continuous portion of oceanic lithosphere. To evaluate potential heterogeneities within and between the various subunits, extensive sampling was undertaken on metasedimentary rocks and Fe–Ti metagabbros. The results indicate that the Monviso ophiolite comprises two main coherent tectonic subunits (the Monviso and Lago Superiore Units) detached during subduction at different depths and later juxtaposed at epidote–blueschist facies during exhumation along the subduction interface. Raman spectroscopy of carbonaceous material suggests (i) a difference in peak temperature of ∼ 50 °C between these two subunits and (ii) a good temperature homogeneity within each subunit. Pseudosections and average P–T estimates using thermocalc in the Lago Superiore Unit suggest for the first time homogeneous HP to UHP conditions ( ∼ 550 °C, 26–27 kbar). Parageneses, peak conditions and tectonic setting are very similar to those of the Zermatt‐Saas ophiolite, 200 km northwards, thus suggesting a common detachment mechanism for the whole Western Alpine belt.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here