Premium
Age and early metamorphic history of the Sanbagawa belt: Lu–Hf and P – T constraints from the Western Iratsu eclogite
Author(s) -
ENDO S.,
WALLIS S.,
HIRATA T.,
ANCZKIEWICZ R.,
PLATT J.,
THIRLWALL M.,
ASAHARA Y.
Publication year - 2009
Publication title -
journal of metamorphic geology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.639
H-Index - 114
eISSN - 1525-1314
pISSN - 0263-4929
DOI - 10.1111/j.1525-1314.2009.00821.x
Subject(s) - eclogite , geology , metamorphism , metamorphic facies , geochemistry , zircon , omphacite , isochron , metamorphic rock , protolith , epidote , petrology , facies , subduction , seismology , paleontology , tectonics , quartz , structural basin , chlorite
Two distinct age estimates for eclogite‐facies metamorphism in the Sanbagawa belt have been proposed: (i) c. 120–110 Ma based on a zircon SHRIMP age for the Western Iratsu unit and (ii) c. 88–89 Ma based on a garnet–omphacite Lu–Hf isochron age from the Seba and Kotsu eclogite units. Despite the contrasting estimates of formation ages, petrological studies suggest the formation conditions of the Western Iratsu unit are indistinguishable from those of the other two units—all ∼20 kbar and 600–650 °C. Studies of the associated geological structures suggest the Seba and Western Iratsu units are parts of a larger semi‐continuous eclogite unit. A combination of geochronological and petrological studies for the Western Iratsu eclogite offers a resolution to this discrepancy in age estimates. New Lu–Hf dating for the Western Iratsu eclogite yields an age of 115.9 ± 0.5 Ma that is compatible with the zircon SHRIMP age. However, petrological studies show that there was significant garnet growth in the Western Iratsu eclogite before eclogite facies metamorphism, and the early core growth is associated with a strong concentration of Lu. Pre‐eclogite facies garnet (Grt1) includes epidote–amphibolite facies parageneses equilibrated at 550–650 °C and ∼10 kbar, and this is overgrown by prograde eclogite facies garnet (Grt2). The Lu–Hf age of c. 116 Ma is strongly skewed to the isotopic composition of Grt1 and is interpreted to reflect the age of the pre‐eclogite phase. The considerable time gap ( c. 27 Myr) between the two Lu–Hf ages suggests they may be related to separate tectonic events or distinct phases in the evolution of the Sanbagawa subduction zone.