Premium
Metamorphism and tectonic evolution of the Shangdan fault zone, Shaanxi, China
Author(s) -
NENGGAO HU,
JIAXI YANG,
SANYUAN AN,
JIANMIN HU
Publication year - 1993
Publication title -
journal of metamorphic geology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.639
H-Index - 114
eISSN - 1525-1314
pISSN - 0263-4929
DOI - 10.1111/j.1525-1314.1993.tb00170.x
Subject(s) - geology , metamorphic rock , tectonics , fault (geology) , metamorphism , proterozoic , fold (higher order function) , strike slip tectonics , geochemistry , thrust fault , seismology , paleontology , mechanical engineering , engineering
The Shangdan fault in the Qinling Orogenic Belt of China is an important boundary between the Caledonian North Qinling Fold Belt and the Hercynian South Qinling Fold Belt. In the Danfeng area, the fault zone strikes WNW–ESE and comprises four strongly deformed zones and three weakly deformed domains parallel to each other. The fault zone has a complex history of multiple deformation and each domain has a different tectonic style that was formed at different stages of the deformation. The rocks exposed in the weakly deformed domains belong to the Qinling, Danfeng and Liuling Groups. In this paper, the mineral chemistry and mineral assemblages are used to infer the metamorphic conditions and the P–T paths of these units. The metamorphic units in and near the fault zone have different metamorphic conditions and histories that are correlated with the tectonic evolution of the fault zone. Caledonian–Hercynian uplift and southward thrusting of the Proterozoic Qinling Group, over the Danfeng and the Liuling Groups, produced the main metamorphic and tectonic features of the fault zone. Folding of both the Liuling Group and the thrust faults during the Hercynian–Indosinian was accompanied by northward thrusting.