Premium
Tumor necrosis factor‐alpha ( TNF‐α ) is a therapeutic target for impaired cutaneous wound healing
Author(s) -
Ashcroft Gillian S.,
Jeong MoonJin,
Ashworth Jason J.,
Hardman Matthew,
Jin Wenwen,
Moutsopoulos Niki,
Wild Teresa,
McCartneyFrancis Nancy,
Sim Davis,
McGrady George,
Song Xiaoyu,
Wahl Sharon M.
Publication year - 2011
Publication title -
wound repair and regeneration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.847
H-Index - 109
eISSN - 1524-475X
pISSN - 1067-1927
DOI - 10.1111/j.1524-475x.2011.00748.x
Subject(s) - tumor necrosis factor alpha , wound healing , inflammation , medicine , immunology , neutralizing antibody , slpi , pharmacology , antibody
Impaired wound healing states lead to substantial morbidity and cost with treatment resulting in an expenditure of billions of dollars per annum in the US alone. Both chronic wounds and impaired acute wounds are characterized by excessive inflammation, enhanced proteolysis, and reduced matrix deposition. These confounding factors are exacerbated in the elderly, in part, as we report here, related to increased local and systemic tumor necrosis factor‐alpha ( TNF‐α ) levels. Moreover, we have used a secretory leukocyte protease inhibitor ( SLPI ) null mouse model of severely impaired wound healing and excessive inflammation, comparable to age‐related delayed human healing, to demonstrate that topical application of anti‐ TNF‐α neutralizing antibodies blunts leukocyte recruitment and NFκB activation, alters the balance between M1 and M2 macrophages, and accelerates wound healing. Following antagonism of TNF‐α , matrix synthesis is enhanced, associated with suppression of both inflammatory parameters and NFκB binding activity. Our data suggest that inhibiting TNF‐α is a critical event in reversing the severely impaired healing response associated with the absence of SLPI , and may be applicable to prophylaxis and/or treatment of impaired wound healing states in humans.