z-logo
Premium
Mesenchymal stem cells' interaction with skin: Wound‐healing effect on fibroblast cells and skin tissue
Author(s) -
Jeon Young Keul,
Jang Yun Ho,
Yoo Dong Ryeol,
Kim Si Na,
Lee Sang Koo,
Nam Myeong Jin
Publication year - 2010
Publication title -
wound repair and regeneration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.847
H-Index - 109
eISSN - 1524-475X
pISSN - 1067-1927
DOI - 10.1111/j.1524-475x.2010.00636.x
Subject(s) - wound healing , mesenchymal stem cell , fibroblast , dermal fibroblast , fibronectin , extracellular matrix , microbiology and biotechnology , chemistry , dermis , immunology , biology , in vitro , biochemistry , anatomy
Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the ability to secrete growth factors. Because wound healing is associated with fibroblast cells and extracellular matrix (ECM) in the dermis and epidermis, we used fibroblast cells to resolve the question of whether or not MSCs regulate wound healing in vitro via a regenerative function. Using a cell proliferation assay, we demonstrated that conditioned media (CM) obtained from MSCs significantly enhanced the cell survival ability of fibroblast cells. Moreover, by measurement of mRNA and protein, we observed that CM also promoted the production or secretion of collagen, elastin, and fibronectin. To better understand the effects of ECM‐related wound healing, we measured the level of collagen‐degradative enzyme (matrix metalloprotease‐1), and observed that CM suppressed matrix metalloprotease‐1 expression. For the determination of oxidative stress, which has an influence on wound healing, we performed the superoxide dismutase and glutathione peroxidase assays; our results suggested that CM inhibited the oxidative stress of fibroblast cells. In order to widely investigate the wound‐healing effects of MSCs, we performed in vivo experiments, and observed that MSCs stimulated wound healing. In summary, the results of this study suggest that MSCs inhibit the loss of fibroblast cells and ECM, and accumulation of oxidative stress. We found that MSCs stimulate wound healing in vitro and in vivo, suggesting that MSCs have the potential to enhance wound healing.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here