z-logo
Premium
Umbrales en la Ocurrencia de Aves Canoras en Relación con la Estructura del Paisaje
Author(s) -
BETTS MATTHEW G.,
FORBES GRAHAM J.,
DIAMOND ANTONY W.
Publication year - 2007
Publication title -
conservation biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.2
H-Index - 222
eISSN - 1523-1739
pISSN - 0888-8892
DOI - 10.1111/j.1523-1739.2007.00723.x
Subject(s) - habitat , fragmentation (computing) , habitat fragmentation , ecology , habitat destruction , extinction (optical mineralogy) , songbird , geography , occupancy , environmental science , biology , paleontology
  Theory predicts the occurrence of threshold levels of habitat in landscapes, below which ecological processes change abruptly. Simulation models indicate that below critical thresholds, fragmentation of habitat influences patch occupancy by decreasing colonization rates and increasing rates of local extinction. Uncovering such putative relationships is important for understanding the demography of species and in developing sound conservation strategies. Using segmented logistic regression, we tested for thresholds in occurrence of 15 bird species as a function of the amount of suitable habitat at multiple scales (150–2000‐m radii). Suitable habitat was defined quantitatively based on previously derived, spatially explicit distribution models for each species. The occurrence of 10 out of 15 species was influenced by the amount of habitat at a landscape scale (≥500‐m radius). Of these species all but one were best predicted by threshold models. Six out of nine species exhibited asymptotic thresholds; the effects of habitat loss intensified at low amounts of habitat in a landscape. Landscape thresholds ranged from 8.6% habitat to 28.7% (= 18.5 ± 2.6%[95% CI]). For two species landscape thresholds coincided with sensitivity to fragmentation; both species were more likely to occur in large patches, but only when the amount of habitat in a landscape was low. This supports the fragmentation threshold hypothesis. Nevertheless, the occurrence of most species appeared to be unaffected by fragmentation, regardless of the amount of habitat present at landscape extents. The thresholds we identified may be useful to managers in establishing conservation targets. Our results indicate that findings of landscape‐scale studies conducted in regions with relatively high proportions of habitat and low fragmentation may not be applicable in regions with low habitat proportions and high fragmentation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here